
Does the Choice of Configuration Framework Matter for Developers?
Empirical Study on 11 Java Configuration Frameworks

Mohammed Sayagh1, Zhen Dong2, Artur Andrzejak2 and Bram Adams1
1MCIS, Polytechnique Montreal, {mohammed.sayagh,bram.adams}@polymtl.ca

2Institute of Computer Science, Heidelberg University, {artur.andrzejak,zhen.dong}@informatik.uni-heidelberg.de

Abstract— Configuration frameworks are routinely used in
software systems to change application behavior without recom-
pilation. Selecting a suitable configuration framework among
the vast variety of existing choices is a crucial decision for de-
velopers, as it can impact project reliability and its maintenance
profile. In this paper, we analyze almost 2,000 Java projects on
GitHub to investigate the features and properties of 11 major
Java configuration frameworks. We analyze the popularity of
the frameworks and try to identify links between the mainte-
nance effort involved with the usage of these frameworks and
the frameworks’ properties. More basic frameworks turn out to
be the most popular, but in half of the cases are complemented
by more complex frameworks. Furthermore, younger, more
active frameworks with more detailed documentation, support
for hierarchical configuration models and/or more data formats
seem to require more maintenance by client developers.

I. INTRODUCTION

Modern software systems are expected to be highly con-
figurable to satisfy the personal requirements and preferences
of their users. For instance, the distributed storage and
computing framework Apache Hadoop 2.7.1. has more than
800 configuration options, where the web browser Mozilla
Firefox 43.0 has over 2,000 configuration options available to
users! The impact of these options ranges from controlling
active features, to adjusting the performance, storing GUI
preferences or integrating a software product with its run-
time environment (e.g., URL of database or web server).
Users typically are able to change the value of configura-
tion options via dedicated configuration files, command line
parameters or even at run-time. For example, Firefox has
a dedicated “about:config” configuration page to change its
configuration on-the-fly.

Since the configuration of a software system is not trivial,
but has to support different storage formats, offline/online
manipulation, etc., developers are not required to develop
their own framework, but have access to a wide range of
general-purpose, open source configuration frameworks for
their programming language of choice. Quick searches for
“configuration” in Google or StackOverflow yield dozens of
hits for each programming language, varying from tiny one-
man configuration frameworks (e.g., Raihan’s jconfig [25]1),
frameworks included in the standard library of a language
(e.g., Java property files) to large, established configuration
frameworks (e.g., Typesafe configuration framework [33]). In

1Not to be confused with the jConfig framework studied in this paper [13].

addition to this, large communities such as Mozilla Founda-
tion or Apache Foundation developed their own configuration
frameworks that have become popular outside as well [1].

This paper analyzes whether the choice of configuration
framework actually matters from the point of view of devel-
opers. Indeed, various studies [12], [19], [20], [36], [23] have
shown how software configuration errors are one of the major
causes of today’s system failures, with sometimes up to
27% of reported issues labeled as configuration-related [37].
A significant part of such configuration errors are caused
by improper design and implementation of configuration-
related code and configuration options, such as lack of
explicit log messages for configuration errors or lack of type
checking of configuration values [36], or the constant need
for maintaining too strongly coupled configuration-related
source code. Such errors could be avoided by choosing the
right configuration framework for a project. Furthermore,
depending on how a configuration framework is integrated
into a project (modular access vs. high coupling), and the
rate of new releases of the framework, developers might
need to spend substantial effort maintaining their use of the
configuration framework.

Hence, this paper performs an empirical study of the
characteristics, popularity and maintenance overhead related
to the use of 11 general-purpose Java configuration frame-
works by analyzing 1,938 GitHub-based Java projects. The
contributions of our work are the following:

• Using manual analysis, we build a taxonomy of the
major features of configuration frameworks. This tax-
onomy helps understand the wide range of features and
differences amongst the frameworks.

• We study the popularity of the 11 frameworks by ana-
lyzing 1,938 projects sampled from GitHub, and which
frameworks are typically used together in a project.

• We build classification models to understand the project
and framework characteristics impacting the mainte-
nance effort for using a configuration framework.

The results of this paper will help to understand the
amount of attention necessary to select a configuration frame-
work for a client project.

II. BACKGROUND AND RELATED WORK

This section provides background and related work on
software configuration and configuration frameworks.

A. Software Configuration Frameworks

Software configuration is the mechanism used to adapt a
software system to different contexts, simply by changing the
value of certain configuration options. As such changes can
be performed by end users, no recompilation is required. For
example, a user can change the database used by a software
system only by changing the URL, username and password
in the associated configuration option.

Such options can be stored in different storage formats
and can use different configuration models. Common stor-
age formats are JSON or XML files, SQL databases or
(more advanced) distributed configuration databases such as
ZooKeeper. Configuration models can range from basic key-
value pairs to more elaborate hierarchical structures used for
example by the Linux kernel or the Windows Registry, where
related low-level options are combined into groups that can
be combined recursively with other option groups.

Many configuration frameworks have been proposed to
manage configuration options, storage formats, models, and
other configuration-related functionality. Such frameworks
provide an API for developers to read an option’s value
within a project’s source code, such that software developers
do not need to implement their own framework. For each
programming language, dozens of open-source configuration
frameworks are available, each with its own focus and feature
set. For example, one of the simplest Java configuration
frameworks is Java Properties, which allow to read key-
value configuration pairs from textual files. However, many
other, 3rd party frameworks exist. In this paper we study
their differences and impact on software maintenance.

B. Related Work

As configuration issues contribute 17% of the total cost of
ownership of todays software, troubleshooting misconfigura-
tions is a large part of technical support [17]. Given the role
of configuration frameworks in avoiding configuration errors,
it is important to understand the impact of configuration
framework choice for a software project. Several researchers
have focused on analyzing and comparing configuration
frameworks, although without considering the impact on
developers. Moreover, a large body of research exists on
configuration errors and debugging.

Configuration Frameworks. Rabkin et al. analyze con-
figuration frameworks in 7 large-scale Java software projects
and find that all 7 projects used a standard key-value configu-
ration model to organize configuration data. They also made
a taxonomy of configuration options, concluding that most
configuration options fall into a small number of data types.
Differently, our work focuses on the taxonomy of existing
configuration frameworks and their properties when used in
the application development.

Other research groups studied projects that use a hierarchi-
cal configuration model, in which options are organized into
a tree instead of a flat key-value model [3], [14]. Such hier-
archical configuration data is widely used [14]. Tresch inves-
tigated common configuration frameworks for Java, briefly
summarizing the application scenarios and configuration data

TABLE I
THE STUDIED CONFIGURATION FRAMEWORKS AND THEIR SIGNATURES.

Framework Released Signature
1 Properties 01.1996 import java.util.Properties
2 System 01.1996 System.getProperty
3 jConfig [13] 10.2001 import org.jconfig.*
4 Preferences 07.2003 import java.util.prefs.*
5 Spring [30] 06.2003 import org.springframework.*
6 Commons [1] 11.2005 import

org.apache.commons.configuration.*
7 Constretto [7] 05.2010 import org.constretto.*
8 Typesafe [33] 12.2011 import com.typesafe.config.*
9 Deltaspike [8] 10.2012 import org.apache.deltaspike.*
10 Owner [21] 12.2012 import org.aeonbits.owner.*
11 CFG4J [5] 07.2015 import org.cfg4j.*

formats for each framework [32], while Denisov summa-
rized the features of three major configuration frameworks
(java.util.prefs.Preferences, java.util.Properties and Apache
Common Configuration) [9]. Instead of focusing on a handful
of configuration frameworks and some of their features, we
performed a detailed analysis on 11 configuration frame-
works for Java.

Configuration Errors. Xu et el. [35] study 620 user-
reported configuration errors from 4 software projects, i.e.,
Apache HTTP server, MySQL database, Apache Hadoop
and a commercial storage system. All these projects have
the over-designed configuration problem, i.e., they offer
hundreds of configurations that are unused, but may im-
pact behavior of the system in unforeseen ways if touched
incorrectly. For instance, 51.9% options can be removed
without impacting the usage of the system. Yin et al. [37]
also study 546 misconfigurations from four widely used open
source systems (CentOS, MySQL, Apache Http Server, and
OpenLDAP). Of these, 70% to 85.5% are due to mistakes in
choosing the value of configuration options, while another
significant number of misconfigurations are due to com-
patibility issues between different components or modules.
Those misconfigurations can be reduced by adopting a well-
designed configuration mechanism in software development.

Arshad et al. [2] study 281 bug reports related to con-
figuration for the GlassFish and JBoss Java EE application
servers. They find that a significant part of configuration
errors are due to mistakes by the developers and require
code modifications to fix the problem. Sayagh et al. [27],
[26] studied configuration errors that span across different
layers of a software stack such as LAMP. One of the causes
of such errors is the diversity of configuration frameworks
and models used across layers. Other research [11], [10],
[24], [38] has studied the impact of configuration models
such as key-value pairs on software misconfiguration. All
this work indicates that configuration frameworks play an
important role in configuration errors and maintenance, and
hence requires careful selection. This paper analyzes this
role.

III. TAXONOMY OF CONFIGURATION FRAMEWORKS

In this section, we introduce the 11 Java configuration
frameworks that we are studying, as well as the taxonomy
of their features and properties that we derived.

TABLE II
TAXONOMY OF THE 11 STUDIED CONFIGURATION FRAMEWORKS (NUMBERED ACCORDING TO TABLE I).

Dimensions Properties 1 2 3 4 5 6 7 8 9 10 11

General
Properties

Universal X X X X X X X X X
Part of SDK X X X

Age high high med med med med low low low low low
Quality of Documentation high high low high high high med high med high med

Actively Maintained X X X X X X X X X

Feature
Richness

Multiple Storage Formats low low med med med high high med med low med
Hierarchical Configuration Struct. X X X X X X X

Hierarchical Overriding X X X X X X X
Multiple Data Sources X X X X X X
Variable Substitution X X X X X

#API methods 15 5 273 39 1,681 1,022 191 109 44 37 57
#Annotations 0 0 0 0 242 0 6 1 16 12 0

Programming
Support

Dependencies none none med none high high med none none none med
Distributed Environment Support X X X X

Type-safety X X X X X X X X X
Notification Mechanisms X X X X
Configuration Injection X X X X X

A. Configuration Frameworks

This paper focuses on general-purpose configuration
frameworks, i.e., configuration frameworks that can be used
in a variety of software systems, from desktop applications
to mobile apps or enterprise software. As such, our analysis
is relevant to a wide range of systems. Furthermore, given
Java’s 20+ years of history and the many (open source)
configuration frameworks available for it, we focused ex-
clusively on general-purpose Java configuration frameworks.
Other programming languages left for future work.

To obtain the catalog of Java configuration frameworks
used in this paper, the first two authors performed search
queries using different keywords and phrases such as “Java
configuration frameworks” and “Java configuration tools”,
then read a large amount of technical fora and blogs. They
quickly converged on a set of 14 frameworks covering a wide
range of mature and young frameworks, which are shown in
Table I, ordered based on the date of their first release.

Before considering the properties of these frameworks in
more detail, it is important to note that some configuration
frameworks were not included in the paper. Play [22] is a
web application framework whose configuration framework
basically is a modified version of the Typesafe framework.
Furthermore, neither Carbon [4], nor Raihan’s jconfig [25]
had any GitHub project as user, hence we excluded these
frameworks as well. Android’s SharedPreferences frame-
work [28] was excluded, since it only applies to Android
apps, and not to desktop or enterprise applications. Finally,
we did include Spring and Deltaspike, since they support
desktop and enterprise applications, although they do not
support mobile apps. The resulting set of 11 frameworks is
used in the remainder of this paper.

B. Taxonomy

In order to understand the differences between configura-
tion frameworks in terms of features and properties, and later
relate those to the popularity and maintenance effort involved
with the usage of these frameworks, we built a taxonomy
of configuration frameworks, then classified each framework
according to the taxonomy.

To determine the taxonomy’s properties, for each frame-
work at least two of the authors manually studied the public
documentation and browsed forums and blog posts associ-
ated with each framework. Any relevant property recurring
within the analyzed framework was tagged. Then, once
all frameworks were analyzed, we compared the tagged
properties across all frameworks to arrive at a final list of
17 framework properties, grouped into 3 dimensions. The
resulting taxonomy, as well as each framework’s classifica-
tion, is shown in Table II. Note that each framework’s tagged
properties were checked by two authors, while the full set
of properties was obtained by all authors together.

The first taxonomy dimension, i.e., General Properties,
contains basic information about the configuration frame-
works. Universal indicates whether a configuration frame-
work is fully general-purpose, or does not support mobile
apps. JDK-Standard indicates if a framework is integrated
into the Java SDK libraries. Age is low if a framework
was created after 2010, high if before 2000, med if in
between 2010 and 2000. If there is no documentation for
a framework, we consider its Quality of Documentation as
low. If the documentation is not very comprehensive and/or
written in a non-rigorous manner, the quality is considered as
med. Finally, for comprehensive and concrete documentation,
we consider the quality as high. To mitigate subjectivity
of assessing quality of documentation, for each framework,
two persons separately looked for related documents such
as JavaDoc and tutorial documents, and had a discussion
to decide its value. Actively Maintained indicates whether
there has been at least one commit to the configuration
framework’s code repository in 2016.

The second dimension, i.e., Feature Richness, measures
how powerful the framework is. Multiple Storage Formats
measures the number of data formats (such as XML, proper-
ties files or JSON) a framework supports: low (1∼2 formats),
med (3∼4 formats) and high (≥5 formats). Hierarchical
Configuration Structure indicates if a framework supports
hierarchically organized configuration data (e.g., tree struc-
tured) or just flat key-value pairs. Hierarchical Overriding
means that the value of an option configured in a lower

priority layer can be overridden by a higher priority layer.
Multiple Data Source indicates that a framework is able to
load configuration data from multiple sources instead of just
from one file. Variable Substitution specifies whether the user
can define and use variables in the configuration file instead
of having to copy repetitive configuration values throughout.
#API methods is the number of public methods within public
classes of each configuration framework. Similarly, #Anno-
tations is the number of public Java annotations proposed by
each of the studied configuration frameworks. The last two
metrics are basically obtained by using the JavaParser tool.
Note that for all these frameworks, methods that are within
test classes are ignored. In addition, since Deltaspike and
Spring contain more than just configuration functionality, we
consider for these two frameworks only the classes whose
own name or package name contains the keyword config.

The final dimension, Programming Support, contains
properties supporting programmers when integrating the con-
figuration framework in their source code. Dependencies
measures how many dependent libraries need to be imported
before using a configuration framework: none (0), med
(0∼10), and high (≥10). Distributed Environment Support
indicates if a framework can be used in a distributed setting,
for example through the use of a configuration database.
Type-safety indicates that a framework checks whether the
value of a configuration option has the right type (e.g., double
vs. integer) when read. Notification Mechanisms specifies
that a system will get a notification from the configuration
framework when configuration data has been changed by the
user. Finally, Configuration Injection allows configuration to
be fully defined in external files, with the corresponding
configuration values automatically injected in the source
code.

Apart from the three frameworks included in the SDK
(Properties, System and Preferences), all frameworks cover
a wide range of features, which confirms the need for a
study like this paper! Only Type-safety is shared amongst all
non-SDK frameworks, but no other clear pattern of feature
usage can be found. The most rare features are Distributed
Environment Support and Notification Mechanisms, with
jConfig, Spring and Commons supporting both of these. The
latter two frameworks are the most fully featured, followed
by Owner and jConfig.

IV. COLLECTED DATA

Now that we understand the different features of the
configuration frameworks, we aim to study the popularity of
each framework (Section V) as well as any relation between
framework or project features and the amount of mainte-
nance effort required in projects using those frameworks
(Section VI). Each of these analyses uses a different data
set of GitHub projects, which we will refer to as “Data Set
1” (popularity) and “Data Set 2” (maintenance effort).

A. Data Set 1: Popularity

Sampling. We first used GHTorrent to create a list of all
non-fork Java projects on GitHub with at least 50 commits.

The latter constraint is important to eliminate as many toy
projects as possible, or repositories that are just mirrors
(and hence only have few GitHub commits) [16]. Then, we
randomly sampled and cloned 10,000 projects from the list.
To verify the diversity of this sample, we used the approach
of Nagappan et al. [18] to compute a diversity score. Our
diversity score considered the following metrics related to
project maturity: number of commits, number of authors,
number of committers, and active age (time span between
first and last commit). The overall diversity score of 1.00
indicates that our sample is sufficiently diverse.

Despite the high diversity score, the sample still con-
tained many repositories not used for developing software
projects [16], such as experimental repositories and repos-
itories containing example code snippets, demos, personal
test code, and so forth. Since those repositories are not
used to develop software projects, we tried to exclude them
from the sample, by selecting only repositories that have at
least 3 stars. This yielded Data Set 1, which contains 1,938
repositories (Table III). Note that the number of stars was not
available from the GHTorrent database, and hence could only
be obtained by scraping the projects’ GitHub repositories
(using Christophe et al.’s crawler [6]).

Mapping projects to configuration frameworks. To learn
which configuration framework(s) is/are used by a project,
we automatically scan the projects’ source code for frame-
work signatures. These are statements indicating that the
particular configuration framework is used in the code, see
Table I. For most frameworks, the signature is a set of import
statements that we manually extracted from the javadoc
documentation of the corresponding framework. Only for
System Properties the signature is not an import statement
(since no import is necessary to use this framework), but
instead we search directly for the System.getProperty() calls.
After scanning the projects of Data Set 1 for these signatures,
for each project we end up with zero or more corresponding
frameworks being used in the latest snapshot.

B. Data Set 2: Maintenance Overhead

To study maintenance overhead involved with configura-
tion framework usage, we cannot use Data Set 1, since due to
the sampling used we might not have sufficient projects for
each configuration framework. Instead of random sampling,
for Data Set 2 we used the frameworks’ signatures to search
for projects using each framework in turn.

Querying. To select Java projects that use at least one of
the 11 Java configuration frameworks, we used the GitHub
search function with a configuration framework signature
as a search keyword, for one framework at a time. Since
GitHub’s web search is limited to 100 pages of search results,
each containing 10 files, for each framework we obtained
a maximum of 1,000 pages matching the framework’s sig-
nature. To increase this number, we performed each search
three times, since GitHub offers three different ranking
algorithms for its search results (”Best Match, Recently
indexed, and Least recently indexed”). Only Constretto and

TABLE III
POPULARITY OF CONFIGURATION FRAMEWORKS IN DATASET 1.

COLUMNS ”#/% PROJECTS” REPORT THE NUMBER/PERCENTAGE OF

PROJECTS USING A GIVEN FRAMEWORK (PROJECTS MAY USE MULTIPLE

FRAMEWORKS), WHILE COLUMN ”# 1 CF” SHOWS THE NUMBER OF

PROJECTS USING only THE GIVEN FRAMEWORK.
Framework # Projects % Projects # 1 CF
System 821 42.36 347
Properties 600 30.96 142
Spring 91 4.70 38
Preferences 57 2.94 6
Commons 37 1.91 5
Typesafe 14 0.72 4
Deltaspike 3 0.15 0
CFG4J 1 0.05 0
Constretto 1 0.05 0
jConfig 0 0 0
Owner 0 0 0
Any Framework 1,034 - 542

TABLE IV
#PROJECTS IN DATASET 2.

CF # Repositories # Non-fork
System 889 338
Commons 836 442
Spring 754 291
Properties 744 399
Preferences 662 408
Typesafe 659 383
Deltaspike 232 157
Owner 144 82
jConfig 53 17
Constretto 37 24
CFG4J 13 7
Total 5,216 2,575

CFG4J yielded less matches than the maximum number of
search results.

Using the GitHub search webscraper of Christophe et
al. [6], we obtained the GitHub project names mentioned
on the 100 pages of search results, and after removing
projects that are forks, we obtained the projects summarized
in Table IV. We scraped their GitHub pages for repository-
related meta-data (like number of releases and stars), and
also cloned them to analyze their code change history.

Mapping projects to configuration frameworks. We used
the same approach as for Data Set 1 to identify the config-
uration frameworks used by each project in Data Set 2.

V. POPULARITY OF CONFIGURATION FRAMEWORKS

In this section, we study the popularity of configuration
frameworks in Github Java projects by addressing two re-
search questions.

RQ1: How Popular are Individual Configuration Frame-
works?

Motivation. Although Table II contains a wide variety of
publicly available configuration frameworks, many of them
have comparable features, for example support for multiple
formats of persistent storage, variable substitution, or type
safety. Consequently, selecting a configuration framework
suitable for a specific Java project typically requires a time-
consuming evaluation of alternatives. By assuming that pop-
ularity of a framework might be an indication of its maturity
and quality, a study of configuration framework popularity

can provide hints for developers about which configuration
frameworks (and hence features) to prefer.

Approach. For each project in Dataset 1, we identify
which configuration framework (or frameworks) it was using
at the time of writing this paper. From this information, we
compute the popularity statistics of Table III. In particular,
we calculate two metrics to measure the popularity of each
framework: the number of projects using this configuration
framework, and the number of projects only using this
configuration framework at the time of writing this paper.

Results. Out of the 1,938 projects of Dataset 1, 1,034
projects use one or more configuration frameworks. The
popularity of each framework is shown in Table III.

Finding 1: System Properties and (java.util) Proper-
ties are the most widely used frameworks. There are
821 projects in the popularity dataset that use the System
Properties framework. Similarly, the Properties framework
is widely used as well, namely by 600 projects. This result
of course comes as no surprise, since these configuration
frameworks are integrated in the Java SDK and hence can
be directly used without importing any external libraries.
However, as we could see in Table II, these are also the
weakest frameworks in terms of features.

Finding 2: Third-party configuration frameworks are
not that commonly used. Table III shows that the top
three third-party frameworks are Spring, Commons, and
Typesafe with 91, 37 and 14 projects using them, respectively
(Preferences is also included in the Java SDK). Given that
Dataset 1 comprises 1,938 projects, the proportion of projects
using third-party configuration frameworks is surprisingly
low, below 5%. In fact, for some of the third-party frame-
works we did not find any project using it in Dataset 1 (which
is why we are using the framework-specific Dataset 2 later
in this paper). This is partly due to the younger age of those
frameworks.

Finding 3: Among the 904 projects without a config-
uration framework, 362 projects are Android projects.
We found that within the considered 904 projects without a
framework there are 362 (40.1%) Android projects. Since the
Android platform provides a SharedPreferences framework
for storing key-value pairs as well as other mechanisms such
as support for SQLite databases and XML files, 209 out
of 362 Android projects use the SharedPreferences frame-
work, refraining from using a general-purpose configuration
framework. The latter statement is confirmed by the fact that
among all 470 Android projects in the whole sample (of
1,938 projects), only 108 or 23% use one of the studied
configuration frameworks

Of the remaining 542, i.e., non-Android, projects without a
configuration framework, we randomly sampled 53 projects
(10%) for manual analysis. We found that 26 projects in
this sample do not use any configuration mechanism. Among
these, there were 7 projects containing code examples (e.g.,
for interviews or exercises), 6 libraries, 4 plugins, 4 small
games, and 4 simple applications. Another 27 projects in the
sample use either an ad hoc configuration mechanism (mostly
XML files), or are plugins for other applications having their

own configuration mechanism. Only 17% of these 27 projects
are stand-alone applications.

Finding 4: Developers prefer easy-to-use and simple
configuration frameworks with good documentation, es-
pecially Spring, Typesafe, Commons and Properties. We
contacted Java developers via 2 Reddit and 4 Facebook
groups with a small survey [31] to better understand the
criteria considered by developers to choose a suitable con-
figuration framework (RQ1).

From the 10 replies that we received, we learnt that ease-
of-use is the developers’ primary criterion for framework
selection (4 votes), followed by the simplicity (2 votes), qual-
ity of documentation (2 votes) and capability of hierarchical
overrides (2 votes). In terms of framework recommendations,
Spring was rated highest (4 votes), followed by Typesafe,
Commons, and Properties (3 votes each). This explains why
standard frameworks like Properties are popular, a finding
that was confirmed even more by the following quote: ”Think
of building software as digging a hole, and the JDK is your
shovel. If you are just digging a hole to plant a tree, your
shovel will do fine. If you are digging a swimming pool, then
you will want to bring in some heavy machinery (aka 3rd
party libraries)”.

RQ2: How Often are Configuration Frameworks Used To-
gether?

Motivation. We found that some projects are using multi-
ple configuration frameworks at the same time. Given the
different focus of frameworks in terms of features (see
Table II), this could suggest that some frameworks are
complementary and serve different purposes. This RQ aims
to understand how common such co-occurrences are as well
as which frameworks co-occur often.

Approach. Using Dataset 1, we count how many projects
use k configuration frameworks in their most recent Git
snapshot), for k = 1, . . . , 5. We also investigate whether
there is a relationship between project maturity and the num-
ber of configuration frameworks a project uses, since older
projects might be larger and hence have heavier demands
for configuration frameworks. We measure maturity in terms
of different metrics, such as age of the project, number
of authors, number of commits, number of committers and
number of source code files.

Finding 5: 47.5% of the projects using a configura-
tion framework (491 out of 1,034) combines multiple
frameworks. 52.5% (543 out of 1,034) of the projects
use one framework, with 38.5% (389 out of 1,034) using
two configuration frameworks. There are substantially less
projects with 3 or more configuration frameworks: 8.3% (86
out of 1,034) with 3 frameworks, and less than 0.6% with 4
or 5 frameworks (6 and 1 projects, respectively).

Finding 6: System and Properties co-occur the most
with other frameworks. The co-occurrence heatmap in
Figure 1 confirms that combinations of System with other
frameworks dominate the co-occurrence relations, followed
by Properties and (at some distance) Spring, Preferences
and Commons. This ranking matches with the popularity

C
F

G
4J

C
om

m
on

s

C
on

st
re

tto

D
el

ta
sp

ik
e

P
re

fe
re

nc
es

P
ro

pe
rt

ie
s

S
pr

in
g

S
ys

te
m

Ty
pe

sa
fe

System

Deltaspike

CFG4J

Constretto

Typesafe

Commons

Preferences

Spring

Properties

1 29 1 3 49 442 40 9

3 3

1 1

1 1 1 1

2 5 1 9

22 5 29 2

1 37 3 49

5 1 3 46 40 1

1 22 1 3 37 46 442 5

Fig. 1. Heatmap of co-occurrence of configuration frameworks in the
projects using a configuration framework.

1

100

10000

0 1 2 3 4 5

P

ro
je

ct
 F

ile
s

Fig. 2. Bean plots of the number of files (y-axis) within projects, grouped
by the number of configuration frameworks used by projects (x-axis).

numbers in Table III, where more popular frameworks co-
occur more often with other frameworks.

As mentioned before, System and Properties only provide
a limited data set, specializing respectively in access to shell
environment variables and to flat files with key-value pairs.
For System, no explicit imports are needed and option values
can be set via the Java command line, lowering the barrier
for using it. This positions both configuration frameworks as
an easy-to-use complementary configuration mechanism.

Finding 7: More mature projects tend to use multiple
configuration frameworks. The beanplots2 in Figure 2 show
that the number of frameworks used by a project is higher
for larger projects (there are only few projects with 4 or
more configuration frameworks, so these beans are not sig-
nificant). Other metrics such as active project age confirmed
this finding, which confirms our earlier hypothesis about
older projects. We could not find any more complex pattern
explaining co-occurrence of configuration frameworks.

Finding 8: The surveyed developers use multiple con-
figuration frameworks in the same project because their
library dependencies needed them, or because of comple-
mentary features provided by configuration frameworks.
Only 4 of the developers in the survey were familiar with
projects using multiple configuration frameworks. One of the
main explanations for co-occurrence of configuration frame-

2A beanplot is a boxplot that also shows the density of the data instead
of just a rectangle.

works was dependence on library or component, for example,
one developer would add an additional configuration frame-
work”only if required by a library/framework”. Another
common reason was to exploit the different functionalities
of each configuration framework, prompting people to just
add a new configuration framework that offers the required
features, ”No need to reinvent the wheel for all things. Just
add what is missing on top”.

VI. MAINTENANCE OVERHEAD OF FRAMEWORKS

In previous sections, we compared different Java config-
uration frameworks in terms of features and studied their
popularity across large and popular Github Java projects.
We also qualitatively found that people tend to choose easy-
to-use and simple configuration frameworks. In this sec-
tion, we identify the taxonomy and software project-related
properties that define such simplicity, in terms of effort
required by client developers to maintain a configuration
framework.Those properties are the ones a client developer
should consider in order to choose a suitable configuration
framework. Our findings could also help configuration frame-
work developers to improve their frameworks by focusing on
more critical attributes from a maintenance point of view.

We address the following research questions:
RQ3 Which factors impact the percentage of configuration-

related commits?
RQ4 Which factors impact the percentage of configuration-

related source files?
RQ5 Which factors impact the percentage of developers

touching configuration code?

A. Case Study Setup

The goal of RQ3 to RQ5 is to compare configuration
frameworks (in terms of their features) based on the effort
required by a developer to maintain them. Maintenance here
refers to any changes involving the configuration framework
API that a developer needs to do while evolving his or her
own software project, for example to update the code to a
new version of the framework or to spread configuration data
throughout the application.

To perform our analysis, we build classification models
explaining one of three effort measures in terms of config-
uration framework (Table II) and project-related properties.
First, we discuss the dependent and independent variables of
the models, before discussing how we built and evaluated
the models.

Dependent Variables. Table V shows the three dependent
variables (CFCommits, CFAuthors and CFFiles), together
with three auxiliary variables they are based on. Each de-
pendent variable measures some facet of maintenance effort.
As we are building classification models, the percentages of
CFCommits, CFAuthors and CFFiles are discretized into a
binary value, using the median as threshold. So, all projects
whose percentage of configuration framework-related com-
mits is higher than the median of that percentage across all
studied projects are considered as having a “high” value,
while others have a “low” value.

To determine when a configuration framework is added
(CFAddedIn) and removed (CFRemovedIn), we identified the
commits that add or remove signature instances of a con-
figuration framework throughout a project’s git repository.
By counting the number of “live” signature instances (+1
for each added instance, -1 for each removed one), we can
determine the full removal of a framework if the count hits
zero.

However, finding all configuration-related commits, i.e.,
not just those adding or removing the signature (import) of
a framework, is less straightforward. One way to find these
commits is to analyse each modified line of a commit for
calls to one of the methods of a configuration framework
API. However, this approach is not accurate, because the
number of methods of a configuration framework can be
very large, while configuration framework API methods do
not always have unique names.

Therefore, we used a technique similar to the approach
used by Zhang et al. [39], which consists of selecting as
“configuration commits” those that contain in their com-
mit message one of the following keywords related to
configuration: config, property, properti, pref, option, and
setting. Hence, for each file containing an import (signature)
statement of a configuration framework, we consider its
“configuration commits” as the commits related to that
configuration framework that we need to analyze. We can
then calculate the variable CFCommits, while the number
of unique configuration framework authors is used for the
CFAuthors variable.

From the same historical data set, we know all the files that
contained code calling the configuration framework, across
the whole history of each repository. This enabled us to
calculate the total number of these source files across time
as the variable CFFiles.

Project-related Variables. A first set of independent
variables is formed by project-related variables, i.e., variables
that control for the activity and state of a source code project
as a whole. They are shown at the bottom of Table V. We
obtained the set of metrics Watch, Star, Branch, Releases
by scraping each Github project’s web page, then used the
git repository’s logs to extract the metrics related to the
number of files, authors, and commits, which are respectively
NbreFiles, NbreAuthors, and NbreCommits.

Configuration Framework Variables. These variables
are the 17 configuration framework properties of Table II.
Note that all projects using the same framework share the
same value for these properties, only their project-related
variables and dependent variables differ. Conversely, projects
that at the time of writing this paper use multiple configura-
tion frameworks, were included once for each configuration
framework, in which case these data instances had over-
lapping project-related metrics, but different configuration
framework properties.

Building the logistic regression models. To build our
logistic regression models [15], our initial training set con-
sists of all projects in Dataset 2 (Table IV). However, since
the values of the configuration framework properties are

TABLE V
AUXILIARY, DEPENDENT AND PROJECT-RELATED (CONTROL) VARIABLES CONSIDERED IN THE MAINTAINABILITY MODELS.

Category Metrics Description

Auxiliary Variables
CFAddedIn Date when a configuration framework is added in a project.
CFRemovedIn Date when a configuration framework is removed from a project.
TotalCommitsInCFPeriod #Commits between the adoption and removal date of a framework in a given project.

Dependent Variables
CFCommits Percentage of commits touching files that access a given configuration framework.
CFAuthors Percentage of authors that change files that access a given configuration framework.
CFFiles Percentage of source code files of a project that access a configuration framework.

Project-related (control)

Watch Number of watches of a Github project.
Star Number of stars of a Github project.
Branch Number of branches of a GitHub project.
Releases Number of releases of a Github project.
NbreFiles Number of files within a GitHub project.
NbreAuthors Number of authors of a GitHub project.
NbreCommits Total number of commits in a GitHub project.

repeated across all projects using a given framework, this
might introduce bias towards the most common configuration
frameworks, yielding models that are overfitted on System
and Properties. To counter this, we resampled the training set
to obtain the same number of instances for each configuration
framework. Based on the number of non-fork projects in
Dataset 2, we chose 30 projects per framework, which
required us to resample jConfig, Constretto and CFG4J with
replacement (i.e., duplicating some of their rows) to obtain
30 data points. The resulting resampled data set forms our
training set.

We used VIF (Variance Inflation Factor) analysis to re-
move highly correlated variables (VIF > 5 [15]), then built
an initial baseline model only containing the project-related
variables as independent variables. We then incrementally
add the three configuration framework dimensions of the tax-
onomy to evaluate the degree to which each dimension adds
new information related to the maintenance effort-related
dependent variable (we build separate models for each of the
three maintenance effort measures). We use ANOVA tests
and AIC score to evaluate how significantly a new model
differs to an earlier model. We then calculate precision, recall
and AUC values (via 10-fold cross-validation) to evaluate
how well the models fit the data in terms of lack of false
alarms, ability to find all known high maintenance projects
and performance improvement compared to a random model,
respectively. We also build a final model with only the
statistically significant variables.

Finally, to understand which variables have the highest
impact on the dependent variable as well as the direction
(increasing/decreasing) of this impact, we used the effect
size score of Shihab et al. [29]. It requires evaluating a
classification model using the median value of each variable
as input, then, one at a time, adding one standard deviation
to the median value of a variable (while keeping the other
attributes at their median value). For example, if the model
output is 50% when all independent variables are at their
median value, while the output after adding a standard
deviation to the first independent variable is 100%, we say
that the latter independent variable has an effect score of
100%−50%

50% = 1, indicating a 100% increase in probability
compared to the baseline effect size. Whereas one cannot
directly compare the coefficients of the logistic regression
models, as not all variables use the same unit [15], the effect

TABLE VI
MODEL FOR RQ3 (AIC: 355.63, PREC.: 77.41%, RECALL: 72.72%).

Attribute Coefficient Std. Error Signif. code Effect size
NbreAuthors 0.009478 0.002097 *** 1.72494E-05
Releases 0.001029 0.0002324 *** 2.07543E-07
NbreCommits -0.0002525 0.00005047 *** -1.10599E-08
ActMaint 1.679 0.3764 *** 2.400912759
PersisVarietyLow 1.214 0.34 *** 1.564812448
AgeLow 1.167 0.3019 *** 1.485730827
QualDocMed -1.277 0.506 * -0.691757625

sizes of each variable can be directly compared to each other.
For boolean variables, we used “false” as the reference

value for the effect size, and used the value “true” instead of
the “median value + standard deviation”. Hence, the effect
size expresses the effect of moving from “false” to “true”.

RQ3. Which factors impact the percentage of configuration-
related commits?

Finding 9: The taxonomy variables have a higher
impact on maintenance effort in terms of number of
commits.

Table VI shows the significant variables in the logistic
regression model, split up in project-related and configuration
framework-related. In both groups, variables are ordered
based on the absolute value of the effect size, from highest
effect (either positive or negative) to lowest. It is easy to see
how the three project-related variables have only a tiny effect
size, close to zero, while the taxonomy-related variables have
an effect size of at least 69.1% (negative; QualDocMed).

We find that the more active the developers of the
configuration framework are (ActMaint), less choice of
storage formats for configuration files (PersisVariety-
Low), or younger configuration frameworks (AgeLow),
the more maintenance effort the client developers of the
framework seem to perform. On the other hand, a lower
quality of documentation (medium as opposed to high;
QualDocMed) seem to be linked to lower effort.

Surprisingly, we found that the higher the quality of a
configuration framework’s documentation, the more commits
the configuration framework requires. This could be ex-
plained by the fact that frameworks with more comprehensive
documentation might be more feature-rich, or that developers
look for easy-to-use configuration frameworks (Section V),
which tend to have concise documentation. More research
is needed to evaluate the needs for good configuration
framework documentation.

TABLE VII
MODEL FOR RQ4 (AIC: 331.87, PREC.: 74.5%, RECALL: 90.30%).

Attribute Coefficient Std. Error Signif. code Effect size
Releases -0.003724 0.002345 -2.90491E-08
NbreFiles -0.0006832 0.0001462 *** -3.32257E-10
NbreCommits 0.00007836 0.00003293 * 8.5836E-12
ScopeUniv -3.797 0.7478 *** -0.12657923
QualDocMed -2.841 0.8845 ** -0.050931693
AgeMed -2.203 0.489 *** -0.026086136
ActMaint -1.825 0.4438 *** -0.017012309
HierStruct 0.8339 0.367 * 0.001885136

TABLE VIII
MODEL FOR RQ5 (AIC: 388.69, PREC. : 64.64%, RECALL: 70.90%).

Attribute Coefficient Std. Error Signif. code Effect size
Branch -0.005857 0.004467 -1.71518E-05
PersisVarietyLow 2.235964 0.468840 *** 1.412526089
ActMaint 1.473443 0.374606 *** 1.021655129
JDKStandard -1.896858 0.449827 *** -0.78785475
QualDocMed -1.599531 0.514350 ** -0.721445889
HierStruct -0.784968 0.322907 * -0.438725736

RQ4. Which factors impact the percentage of configuration-
related source files?

Finding 10: Taxonomy variables again have the
strongest link with maintenance effort.

We obtain similar findings as for RQ3 (see Table VII), with
ActMaint, AgeMed (replacing AgeLow) and QualDocMed
again figuring amongst the most highly impacting variables,
although the sign of the effect size has changed. Furthermore,
ScopeUniv and HierStruct are additional impactful variables.

We find that younger (AgeMed, as compared to Age-
High) and actively maintained (ActMaint) configuration
frameworks, with less documentation (QualDocMed) and
a universal scope (ScopeUniv), are spread across less
files in a given source project. Frameworks that support
hierarchical configuration models (HierStruct) are spread
across more files, although this effect size is close to zero.

The finding for AgeMed is as expected, since older frame-
works have been used longer by projects, leading to tighter
integration. Moreover, this finding can give an indication that
developers progressively add configuration frameworks in
different source code files, which leads to stronger coupling
to the configuration framework.

The scope of configuration frameworks is the third
most important factor, indicating that less general-purpose
frameworks like Spring have a stronger coupling to a
software system, likely because they come with more heavy
configuration (and other) machinery. The HierStruct finding
seems to suggest that hierarchical configuration models have
a stronger coupling with source code projects, i.e., require
more complicated interactions in a project.

RQ5. Which factors impact the percentage of developers
touching configuration code?

Finding 11: Taxonomy variables have the highest
impact.

Since RQ5 yields similar results as RQ3 (Table VIII),
we only discuss the differences. The age of the configuration
frameworks does not play a major role, and is replaced by
the variables JDKStandard and HierStruct. In particular, Java
SDK frameworks have less developers making changes

to configuration-related code (likely due to their simplicity),
while the use of hierarchical configuration models sees
less developers do changes (in more files, see RQ4).

B. Discussion

Based on the three explanatory models, we conclude that
configuration framework taxonomy metrics have important
relations with the effort required to maintain configuration
frameworks in a given software project. Surprisingly, none
of the significant configuration framework variables belongs
to the Programming Support dimension (Table II), while all 5
General Properties and 2 out of 7 Feature Richness properties
were significant in at least one model.

One of the two most commonly impactful General Prop-
erties is the degree of active development of a configuration
framework. The more active, the more commits and develop-
ers need to be involved to maintain a client project, although
slightly less files in the project actually use the framework.
This basically empirically confirms the common knowledge
that code reuse implies staying on the lookout for updates.

The other commonly impactful General Property is the
quality of documentation. Higher quality involves more
maintenance commits by more developers across more files.
This was the most surprising finding. We believe that a
correct interpretation of this finding is that documentation
should be ”simple but not simplistic”. It should emphasize
concise examples about how to integrate a configuration
framework, as developers generally have a lack of time to
deeply learn a configuration framework.

Older, stable frameworks require less maintenance com-
mits (likely because the framework is less active), but their
usage typically is spread across more files in a project.
Finally, hierarchical configuration models were associated
with less developers making commits, but those commits
touched more files of a project.

VII. THREATS TO VALIDITY

Regarding threats to external validity, we only considered
general-purpose configuration frameworks for Java projects.
However, according to Nagappan et al.’s diversity mea-
sures [18] (value close to 1), our sample of repositories is
representative for the population of Java projects in GitHub.
In future work, we plan to investigate other programming
languages, as well as domain-specific configuration frame-
works like SharedPreferences.

Regarding construct validity, we use the percentage of
changes, files or authors touching configuration framework
usage as proxies for maintenance effort. Although these
are typical approximations for maintenance effort case stud-
ies [34], they are still proxies. Although we studied three
different proxies, using other metrics should be considered
in future work. Note that we did not distinguish bug fix
commits from commits adding new features or using new
framework APIs, as those would require additional heuristics
for analyzing our data on top of the ones we use to identify
configuration commits. However, our models do control for

the total activity in a project, hence we believe this threat is
addressed in a reasonable manner.

Finally, regarding internal validity, we conducted a short
survey for which we received 10 answers. We plan to conduct
a larger survey to investigate configuration frameworks and
their impact on configuration errors and maintenance effort.

VIII. CONCLUSIONS

We conducted an empirical study on 11 major Java con-
figuration frameworks in almost 2,000 GitHub projects. A
proposed taxonomy of framework features provides evidence
of the wide variety of features offered by configuration
frameworks. It also supports practitioners in selecting frame-
works whose features are most suitable to the projects.

We found that SDK frameworks are the most commonly
used frameworks, in half of the cases complemented by
more powerful frameworks. Simple frameworks are typically
preferred. Also, the choice of configuration framework ex-
plains to a large degree the maintenance effort required for
configuration, whereas project-specific characteristics play
less of a role. More active frameworks with higher quality
documentation that have more flexible configuration storage
formats have a higher tendency towards more configuration-
related changes by more developers. On the other hand, older,
less active configuration frameworks with high documenta-
tion tend to be used across more files in a software project.

Our findings empirically confirm common assumptions
about configuration frameworks (e.g., reuse requires more
maintenance if reused framework is active). However, they
also raise new questions about the role of configuration
framework documentation or the perils of hierarchical con-
figuration models (stronger coupling), which should be ad-
dressed in future work.

REFERENCES

[1] Apache commons configuration. https://commons.apache.org/proper/
commons-configuration/.

[2] F. A. Arshad, R. J. Krause, and S. Bagchi. Characterizing configuration
problems in java ee application servers: An empirical study with
glassfish and jboss. In 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), pages 198–207, Nov 2013.

[3] Farnaz Behrang, Myra B. Cohen, and Alessandro Orso. Users beware:
Preference inconsistencies ahead. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, New York, USA, 2015. ACM.

[4] Carbon. http://carbon.sourceforge.net/WhatIsCarbon.html.
[5] Cfg4j. http://www.cfg4j.org/.
[6] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter. Prevalence

and maintenance of automated functional tests for web applications.
In Software Maintenance and Evolution (ICSME), 2014 IEEE Inter-
national Conference on, pages 141–150, Sept 2014.

[7] Constretto. http://constretto.org/.
[8] Deltaspike. https://deltaspike.apache.org/.
[9] Victor Denisov. Overview of java application configuration frame-

works. Inter Journal of Open Information Technologies, 1(6), 2013.
[10] Zhen Dong, Artur Andrzejak, and Kun Shao. Practical and accurate

pinpointing of configuration errors using static analysis. In Proc. of
Inter. Conference on Software Maintenance and Evolution (ICSME),
Sept 2015.

[11] Zhen Dong, Mohammadreza Ghanavati, and Artur Andrzejak. Auto-
mated diagnosis of software misconfigurations based on static analysis.
In Inter. Workshop of Program Debugging (IWPD) at ISSRE 2013.

[12] Jim Gray. Why do computers stop and what can be done about it?
In Symposium on Reliability in Distributed Software and Database
Systems, pages 3–12. IEEE Computer Society, 1986.

[13] jconfig. https://sourceforge.net/projects/jconfig/.
[14] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson. Configu-

rations everywhere: Implications for testing and debugging in practice.
In Companion Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, pages 215–224, 2014.

[15] Robert Kabacoff. R in Action: Data Analysis and Graphics with R.
Manning Publications Co., Greenwich, CT, USA, 2015.

[16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela Damian. The promises and perils of
mining github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages 92–101, 2014.

[17] A. Kapoor. Web-to-host: Reducing total cost of ownership. Technical
report, Technical Report 200503, The Tolly Group, May 2000.

[18] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird.
Diversity in Software Engineering Research. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 466–476, New York, NY, USA, 2013. ACM.

[19] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Martin,
and Thu D. Nguyen. Understanding and dealing with operator
mistakes in internet services. In OSDI’04, Berkeley, CA, USA, 2004.

[20] David Oppenheimer, Archana Ganapathi, and David A. Patterson.
Why do internet services fail, and what can be done about it? In
Proceedings of the 4th Conference on USENIX Symposium on Internet
Technologies and Systems - Volume 4, USITS’03, 2003.

[21] Owner. http://owner.aeonbits.org/.
[22] Play framework. https://www.playframework.com/.
[23] A. Rabkin and R.H. Katz. How hadoop clusters break. Software,

IEEE, 30(4):88–94, July 2013.
[24] Ariel Rabkin and Randy Katz. Precomputing possible configuration

error diagnoses. In Proc. of the 2011 26th IEEE/ACM Intl. Conf. on
Automated Software Engineering, ASE ’11, pages 193–202, 2011.

[25] Raihan’s jconfig. https://github.com/prshreshtha/jconfig.
[26] Mohammed Sayagh and Bram Adams. Multi-layer software config-

uration – empirical study on wordpress. In Proc. of the 15th IEEE
Inter. Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 31–40, Bremen, Germany, September 2015.

[27] Mohammed Sayagh, Noureddine Kerzazi, and Bram Adams. On cross-
stack configuration errors. In Proc. of the 39th Inter. Conference on
Software Engineering (ICSE), Buenos Aires, Argentina, May 2017.

[28] SharedPreferences. https://developer.android.com/reference/android/
content/SharedPreferences.html.

[29] Emad Shihab, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.
Is lines of code a good measure of effort in effort-aware models?
Information and Software Technology, 55(11):1981–1993, 2013.

[30] Spring framework. https://projects.spring.io/spring-framework/.
[31] Developer’s survey via google forms. https://goo.gl/kXCQ7Q.
[32] Anatole Tresch. Java configuration.

http://javaeeconfig.blogspot.de/2014/08/overview-of-existing-
configuration.html.

[33] Typesafe. https://github.com/typesafehub/config.
[34] Hong Wu, Lin Shi, Celia Chen, Qing Wang, and Barry W. Boehm.

Maintenance effort estimation for open source software: A systematic
literature review. In 2016 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October
2-7, 2016, pages 32–43, 2016.

[35] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupa-
thy, and Rukma Talwadker. Hey, you have given me too many knobs!:
Understanding and dealing with over-designed configuration in system
software. In Proc. of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, New York, USA. ACM.

[36] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. Do not blame
users for misconfigurations. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, 2013.

[37] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An Empirical Study on
Configuration Errors in Commercial and Open Source Systems. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 159–172, 2011.

[38] Sai Zhang and Michael D. Ernst. Automated diagnosis of software
configuration errors. In Proc. of the 34th International Conference on
Software Engineering, San Francisco, CA, USA, May 22–24, 2013.

[39] Sai Zhang and Michael D. Ernst. Which Configuration Option Should
I Change? In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 152–163, New York, NY,
USA, 2014. ACM.

